Zielone oblicze węgla

Print Friendly and PDF

 

WYDZIAŁ CHEMII

 

Większości z nas węgiel kojarzy się z surowcem naturalnym, który po wydobyciu wykorzystywany jest głównie jako paliwo stałe. Okazuje się jednak, że coraz częściej produkujemy materiały węglowe na skalę laboratoryjną lub przemysłową z myślą o ich użyciu w różnych zaawansowanych aplikacjach.

Od dawna znane jest lecznicze działanie węgla aktywnego – specyficznej postaci węgla, który doskonale wiąże związki chemiczne zawarte w otoczeniu. Na przykład w stanach zatrucia pokarmowego węgiel aktywny eliminuje drobnoustroje oraz toksyny z organizmu ludzkiego.

Unikalne właściwości

Zakres wykorzystania węgli aktywnych jest jednak znacznie szerszy. Materiały te można spotkać przede wszystkim w technologiach proekologicznych, w których służą jako adsorbenty używane do eliminacji zanieczyszczeń zawartych w wodzie i powietrzu. Stosowane są one również jako nośniki katalityczne, katalizatory oraz materiały elektrodowe.

Podstawową zaletą węgli aktywnych, która powoduje, że są one tak użyteczne, jest ogromne rozwinięcie powierzchni (które można sobie wyobrazić jako ułożenie na płaszczyźnie rozciętej bryły) o specyficznej budowie chemicznej. 1 gram takiego materiału ma zwykle powierzchnię ponad 1000 m2, czyli 10 arów. Zmieszczenie tak wielkiej powierzchni w ograniczonej porcji materiału jest możliwe tylko dzięki obecności niezliczonej ilości bardzo wąskich kanalików (o średnicach nie przekraczających 2 nm), zwanych mikroporami. Powierzchnia ich ścianek bocznych sumuje się do wspomnianej wyżej wielkości. Warto dodatkowo podkreślić, iż zawiera ona obok pierwiastkowego węgla również atomy innych pierwiastków, w tym przede wszystkim wodoru i tlenu. To obecność dużej liczby centrów powierzchniowych zawierających tlen decyduje o ponadprzeciętnych właściwościach adsorpcyjnych węgli aktywnych.

Opisana powyżej mikroporowatość jest równocześnie wadą węgli aktywnych. Do wnętrza tak wąskich kanałów nie mogą migrować większe cząsteczki, gdyż ich rozmiary przekraczają średnice porów. Stanowi to znaczne ograniczenie w zastosowaniach węgli aktywnych, które stało się poważnym wyzwaniem dla świata nauki.


fot.: © Zelli | Dreamstime.com

 

Repliki węglowe

Opracowywane są na coraz szerszą skalę różne metody syntezy materiałów węglowych zawierających w swojej strukturze znacznie szersze kanały, na przykład ze średnicami w zakresie od 2 do 50 nm (określane jako mezopory). Jedną z grup materiałów o takich cechach, zaproponowaną przez naukowców, są repliki węglowe, których nowatorską metodę otrzymywania stworzono w Zespole Technologii Organicznej na Wydziale Chemii UJ. Synteza opiera się na zastosowaniu tzw. szablonu strukturotwórczego, czyli mezoporowatej krzemionki o bardzo regularnym rozmieszczeniu kanałów. Jeśli pory takiej matrycy wypełnimy substancją stanowiącą prekursor węgla (związek, z którego, w wyniku dalszej obróbki, powstaje węgiel), to po przeprowadzonej karbonizacji (wygrzewaniu w wysokiej temperaturze w atmosferze beztlenowej) otrzymamy układ hybrydowy zbudowany z węgla zlokalizowanego w kanałach materiału krzemionkowego (SiO2). Wymiary oraz kształt części węglowej będą zdeterminowane przez układ porów obecnych w SiO2.

Końcowym etapem syntezy mezoporowatego materiału węglowego jest usunięcie części krzemionkowej przez wypłukanie kwasem fluorowodorowym, który rozpuszcza selektywnie SiO2, nie naruszając struktury części węglowej. W konsekwencji uzyskiwane są materiały węglowe (np. typu CMK-3) o bardzo dużym uporządkowaniu. Dobrą wizualizacją opisanej struktury jest zdjęcie gotowej repliki węglowej typu CMK-3 wykonane przy użyciu metody transmisyjnej mikroskopii elektronowej (TEM).

Zaproponowana w Zespole Technologii Organicznej UJ metoda syntezy wspomnianych replik węglowych jest tania, efektywna i powtarzalna, co zweryfikowano eksperymentalnie przy zastosowaniu odpowiednich metod fizykochemicznych (niskotemperaturowa sorpcja azotu, proszkowa dyfrakcja rentgenowska, transmisyjna mikroskopia elektronowa).


Replika węglowa typu CMK-3, zdjęcie wykonane przy użyciu
metody transmisyjnej mikroskopii elektronowej (TEM)

 

Zastosowania

Zsyntetyzowane sito węglowe z powierzchnią właściwą w zakresie 1000-1100 m2/g i całkowitą objętością porów ok. 0,9 cm3/g okazało się bardzo aktywnym katalizatorem w utleniającym odwodornieniu etylobenzenu. Proces ten może stać się w przyszłości alternatywną, bardziej przyjazną dla środowiska naturalnego metodą pozyskiwania styrenu będącego jednym z podstawowych monomerów w przemyśle tworzyw sztucznych. Sprawdzono również efektywność działania repliki CMK-3 w usuwaniu lotnych związków organicznych z powietrza, obserwując bardzo interesujące właściwości adsorpcyjne. Można zatem przypuszczać, że opracowany materiał może być podstawą działania nowoczesnych filtrów stosowanych do oczyszczania powietrza.